A Cyclic Dimer of Metalloporphyrin Forms a Highly Stable Inclusion Complex with C₆₀

Kentaro Tashiro,[†] Takuzo Aida,^{*,†} Jiang-Yu Zheng,[‡] Kazushi Kinbara,[‡] Kazuhiko Saigo,^{*,‡} Shigeru Sakamoto,[§] and Kentaro Yamaguchi^{§,||}

Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan, Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan, Chemical Analysis Center, Chiba University, Yayoi-cho, Inage-ku, Chiba 2638522, Japan

Received July 12, 1999

Host molecules for inclusion of fullerenes are of great importance because of their application to extraction and chemical modification of fullerenes.¹ In particular, inclusion via π -electronic donor-acceptor interactions is highly interesting in view of possible supramolecular modulation of electronic properties of fullerenes. Herein we report that a face-to-face cyclic dimer of zinc porphyrin (1) forms a highly stable 1:1 inclusion complex with C₆₀ via donor-acceptor interactions.

Zinc porphyrin cyclic dimer 1 was synthesized by hydrogenation of 2 having rigid diacetylenic spacers (Scheme 1). A benzene solution of 1 upon mixing with C₆₀ showed a marked color change from bright reddish purple to dark red. In the electronic absorption spectrum of a mixture of 1 and C₆₀, the Soret absorption band of 1 was observed to shift bathochromically from 410.5 to 417.5 nm, suggesting an electronic interaction of 1 with C_{60} (Figure 1).² Interestingly, when an equimolar mixture of 1 and C_{60} was

§ Chiba University. Responsible for ESI-MS.

(1) Selected examples of C₆₀ receptors: (a) Andersson, T.; Nilsson, K.; Sundahl, M.; Westman, G.; Wennerström. J. Chem. Soc., Chem. Commun. 1992, 604. (b) Diederich, F.; Effing, J.; Jonas, U.; Jullien, L.; Plesnivy, T.; Ringsdorf, H.; Thilgen, C.; Weinstein, D. Angew. Chem., Int. Ed. Engl. 1992, 31, 1599. (c) Atwood, J. L.; Koutsantonis, G. A.; Raston, C. L. Nature 1994, 368, 229. (d) Suzuki, T.; Nakashima, K.; Shinkai, S. Chem. Lett. 1994, 699. (e) Yoshida, Z.; Takekuma, H.; Takekuma, S.; Matsubara, Y. Angew. Chem., Int. Ed. Engl. 1994, 33, 1597. (f) Haino, T.; Yanase, M.; Fukazawa, Y. Angew. Chem., Int. Ed. Engl. 1998, 37, 997.

(2) Several covalently linked porphyrin/C₆₀ systems have been reported to show similar red shifts in the Soret absorption bands. For selected examples, (a) Imahori, H.; Hagiwara, K.; Aoki, M.; Akiyama, T.; Taniguchi, S.; Okada, (a) manoh, n., Hagiwaia, K., Aoki, M., Akiyana, T., Hangucin, S., Okada, T., Shirakawa, M.; Sakata, Y. J. Am. Chem. Soc. **1996**, *118*, 11771. (b) Kuciauskas, D.; Lin, S.; Seely, G. R.; Moore, A. L.; Moore, T. A.; Gust, D.; Drovetskaya, T.; Reed, C. A.; Boyd, P. D. W. J. Phys. Chem. **1996**, *100*, 15926. (c) Baran, P. S.; Monaco, R. R.; Khan, A. U.; Schuster, D. I.; Wilson, C. P. L. Gusta, D. S. Monaco, R. R.; Khan, A. U.; Schuster, D. I.; Wilson, S. P. L. & Chem. Soc. Control of the second S. R. J. Am. Chem. Soc. 1997, 119, 8363. (d) Bourgeois, J.-P.; Diederich, F.; Echegoyen, L.; Nierengarten, J.-F. Helv. Chim. Acta 1998, 81, 1835. (e) Dietel, E.; Hirsch, A.; Eichhorn, E.; Rieker, A.; Hackbarth, S.; Röder, B. Chem. Commun. 1998, 1981. (f) Cheng, P.; Wilson, S. R.; Schuster, D. I. Chem. Commun. 1999, 89.

Figure 1. Spectroscopic titration of receptor 1 with C_{60} in benzene at 25 °C: $[1] = 1.96 \times 10^{-6} \text{ M}; [C_{60}]/[1] = 0, 0.74, 1.48, 2.96, 5.91, 10.35,$ 14.77.

Figure 2. ESI-MS spectrum of a THF solution of a mixture of 1 and $C_{60}.^{3}$

subjected to TLC on alumina with benzene as eluent, only a single spot was observed at $R_f = 0.13$ without any other spots at 0.72 and 0.85 due to 1 and C_{60} , respectively. On the other hand, when either 1 or C₆₀ was present in excess with respect to the counterpart, the TLC trace showed an additional spot due to free 1 or C_{60} . These observations indicate that 1 and C_{60} form a highly stable complex. Accordingly, the complex between 1 and C_{60} could be easily isolated by column chromatography on alumina.

When benzene solutions of **1** and C_{60} (1.9 \times 10⁻⁶ M) were mixed at varying volume ratios (Job's plots) at 25 °C, the change in absorbance at 410.5 nm displayed a maximum at a mole ratio 1:C₆₀ of unity. Furthermore, electrospray ionization mass spectrometry (ESI-MS) of a THF solution of a mixture of 1 and C_{60} clearly showed two sets of isotopic distributions centered at m/z2785.89 and 1393.12 (Figure 2),³ which correspond to the mono and dication, respectively, of a 1:1 complex between 1 and C_{60} . To determine the binding constant of the complexation of 1 with C_{60} , we titrated a benzene solution of 1 with C_{60} at 25 °C, where the absorption spectral change showed a clear isosbestic point at 418.0 nm (Figure 1). From the change in absorbance at 410.5

Authors of correspondence.

[†] Department of Chemistry and Biotechnology, The University of Tokyo. [‡] Department of Integrated Biosciences, The University of Tokyo.

⁽³⁾ C₆₀ was added to a THF solution of 1 (2.2 \times 10⁻⁴ M), and the mixture was sonicated for 20 min and subjected to ESI-MS (JEOL Type JMS-700T) with a four-sector (BEBE) tandem mass spectrometer. Conditions: needle volt, 2.0 kV; current, 300-700 nA; acceleration volt, 5.0 kV; resolution, 5000; chamber temperature, 150 °C; flow rate, 10 µL min⁻¹

Scheme 1

nm, the binding constant of the 1:1 complexation was evaluated to be $6.7 \times 10^5 \text{ M}^{-1.4}$ To the best of our knowledge, this is the highest binding constant reported to date for host–guest interactions with C_{60} in organic solvents.^{1f} In sharp contrast, cyclic dimer **2**, having rigid diacetylenic spacers between the two zinc porphyrin units, showed no spectral change at the visible region upon mixing with C_{60} under similar conditions.

Host molecule 1 in solution exists as a mixture of conformational isomers due to its flexible spacers:5 1H NMR spectrum of 1 in C₆D₆ at 25 °C showed two sets of three singlet signals at δ 10.60–9.57 and 3.07–2.67 ppm due to meso and β -methyl resonances, respectively. ¹H NMR saturation transfer profile⁶ of 1 indicated that such conformational isomers are transformed with one another at a rate slower than the NMR time scale. On the other hand, when an equimolar amount of 4,4'-bipyridine (bpy)⁷ with respect to 1 was added to the solution, the ¹H NMR spectrum became much simplified to show single meso (δ 10.53) and β -methyl (δ 3.06) signals together with two upfield-shifted doublet signals due to bpy (δ 8.79, 7.05 \rightarrow 3.42, 2.09). Thus, bpy was incorporated between the two zinc porphyrin units in an inducedfit fashion.8 A similar NMR spectral change was observed upon addition of C_{60} to a C_6D_6 solution of 1, where the meso and β -methyl resonances showed singlet signals at δ 10.32 and 2.87 ppm, respectively. These results indicate the formation of an inclusion complex between 1 and C_{60} (Figure 3). When the inclusion complex was mixed with an equimolar amount of bpy,7 C_{60} was released quantitatively from the cavity, to form a complex of **1** coordinated with bpy.

¹³C NMR spectrum of the inclusion complex of **1** and C₆₀ in C₆D₆ at 30 °C showed a single signal due to the included C₆₀ at δ 140.10 ppm, which is upfield-shifted from that of free C₆₀ (δ 143.21). Such an upfield shift is considered to reflect the shielding effect and/or the electronic effect of the zinc porphyrin π -cloud. Cyclic voltammetry of an equimolar mixture of **1** and C₆₀ in CH₂-

Figure 3. A computer-generated molecular model of the inclusion complex between 1 and C_{60} , optimized with a CAChe molecular mechanics calculation. For ease of calculation, the peripheral hexyl groups of 1 were replaced by methyl groups.

Cl₂ showed that the first reduction of C₆₀ occurs at -1.11 V vs Fc/Fc^{+.9} Comparison of the observed redox potential with that of free C₆₀ ($E_{1/2} = -1.05$ V) indicates that C₆₀ becomes less subject to reduction upon complexation with **1**. Therefore, it is likely that a π -electronic interaction is operative between **1** and C₆₀ in the inclusion complex.¹⁰

In conclusion, we have developed a novel macrocyclic receptor for the inclusion of C_{60} via π -electronic donor—acceptor interactions, where the very high binding constant ($6.7 \times 10^5 \text{ M}^{-1}$) enables chromatographic separation of C_{60} . The change in redox potentials of the included C_{60} also suggests a potential utility of the *supramolecular approach* for the modulation of the electronic properties of fullerenes.

Acknowledgment. K.S. and J.Y.Z. thank JSPS for financial support. K.T. thanks JSPS Research Fellowship for Young Scientists. We are grateful to Dr. F. Hasegawa of Science University of Tokyo for HRMS analysis of 1 and 2.

Supporting Information Available: Details for synthesis and characterization of 1 and 2, together with ¹H NMR spectral profiles of 1, an equimolar mixture of 1 and 4,4'-bipyridine (bpy), and that of 1 and C_{60} in C_6D_6 at 25 °C. This material is available free of charge via the Internet at http://pubs.acs.org.

JA992416M

⁽⁴⁾ Spectral change was analyzed by a nonlinear curve fitting method ($R^2 = 0.999417$).

⁽⁵⁾ For ¹H NMR spectra, see Supporting Information. Presence of conformational isomers in analogous dimeric porphyrin systems has been reported in Golubchikov, O. A.; Mamardashvili, N. Zh.; Semeikin, A. S. *Zh. Org. Khim.* **1993**, *29*, 2445.

⁽⁶⁾ Sanders, J. K. M.; Hunter, B. K. *Modern NMR Spectroscopy*; Oxford University: Oxford, U.K., 1987.

⁽⁷⁾ The binding constant of bpy in benzene at 25 °C was 3.2×10^8 M⁻¹, as determined spectroscopically.

⁽⁸⁾ Bampos, N.; Marvaud, V.; Sanders, J. K. M. Chem. Eur. J. 1998, 4, 335.

⁽⁹⁾ Cyclic voltammograms of C_{60} in the absence and presence of 1 were recorded in CH₂Cl₂ (10⁻⁴ M) on a BAS Type CV–27 voltammetry controller with Bu₄NPF₆ (0.1 M) at Pt using a Ag wire pseudo reference electrode and recalculated against internal Fc/Fc⁺.

⁽¹⁰⁾ A comparable cathodic shift of the reduction potential has been reported in ref 2d.